D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
proc
/
thread-self
/
root
/
proc
/
self
/
root
/
opt
/
alt
/
ruby22
/
lib64
/
ruby
/
2.2.0
/
rexml
/
Filename :
xpath_parser.rb
back
Copy
require 'rexml/namespace' require 'rexml/xmltokens' require 'rexml/attribute' require 'rexml/syncenumerator' require 'rexml/parsers/xpathparser' class Object # provides a unified +clone+ operation, for REXML::XPathParser # to use across multiple Object types def dclone clone end end class Symbol # provides a unified +clone+ operation, for REXML::XPathParser # to use across multiple Object types def dclone ; self ; end end class Fixnum # provides a unified +clone+ operation, for REXML::XPathParser # to use across multiple Object types def dclone ; self ; end end class Float # provides a unified +clone+ operation, for REXML::XPathParser # to use across multiple Object types def dclone ; self ; end end class Array # provides a unified +clone+ operation, for REXML::XPathParser # to use across multiple Object+ types def dclone klone = self.clone klone.clear self.each{|v| klone << v.dclone} klone end end module REXML # You don't want to use this class. Really. Use XPath, which is a wrapper # for this class. Believe me. You don't want to poke around in here. # There is strange, dark magic at work in this code. Beware. Go back! Go # back while you still can! class XPathParser include XMLTokens LITERAL = /^'([^']*)'|^"([^"]*)"/u def initialize( ) @parser = REXML::Parsers::XPathParser.new @namespaces = nil @variables = {} end def namespaces=( namespaces={} ) Functions::namespace_context = namespaces @namespaces = namespaces end def variables=( vars={} ) Functions::variables = vars @variables = vars end def parse path, nodeset path_stack = @parser.parse( path ) match( path_stack, nodeset ) end def get_first path, nodeset path_stack = @parser.parse( path ) first( path_stack, nodeset ) end def predicate path, nodeset path_stack = @parser.parse( path ) expr( path_stack, nodeset ) end def []=( variable_name, value ) @variables[ variable_name ] = value end # Performs a depth-first (document order) XPath search, and returns the # first match. This is the fastest, lightest way to return a single result. # # FIXME: This method is incomplete! def first( path_stack, node ) return nil if path.size == 0 case path[0] when :document # do nothing return first( path[1..-1], node ) when :child for c in node.children r = first( path[1..-1], c ) return r if r end when :qname name = path[2] if node.name == name return node if path.size == 3 return first( path[3..-1], node ) else return nil end when :descendant_or_self r = first( path[1..-1], node ) return r if r for c in node.children r = first( path, c ) return r if r end when :node return first( path[1..-1], node ) when :any return first( path[1..-1], node ) end return nil end def match( path_stack, nodeset ) r = expr( path_stack, nodeset ) r end private # Returns a String namespace for a node, given a prefix # The rules are: # # 1. Use the supplied namespace mapping first. # 2. If no mapping was supplied, use the context node to look up the namespace def get_namespace( node, prefix ) if @namespaces return @namespaces[prefix] || '' else return node.namespace( prefix ) if node.node_type == :element return '' end end # Expr takes a stack of path elements and a set of nodes (either a Parent # or an Array and returns an Array of matching nodes ALL = [ :attribute, :element, :text, :processing_instruction, :comment ] ELEMENTS = [ :element ] def expr( path_stack, nodeset, context=nil ) node_types = ELEMENTS return nodeset if path_stack.length == 0 || nodeset.length == 0 while path_stack.length > 0 if nodeset.length == 0 path_stack.clear return [] end case (op = path_stack.shift) when :document nodeset = [ nodeset[0].root_node ] when :qname prefix = path_stack.shift name = path_stack.shift nodeset.delete_if do |node| # FIXME: This DOUBLES the time XPath searches take ns = get_namespace( node, prefix ) if node.node_type == :element if node.name == name end end !(node.node_type == :element and node.name == name and node.namespace == ns ) end node_types = ELEMENTS when :any nodeset.delete_if { |node| !node_types.include?(node.node_type) } when :self # This space left intentionally blank when :processing_instruction target = path_stack.shift nodeset.delete_if do |node| (node.node_type != :processing_instruction) or ( target!='' and ( node.target != target ) ) end when :text nodeset.delete_if { |node| node.node_type != :text } when :comment nodeset.delete_if { |node| node.node_type != :comment } when :node # This space left intentionally blank node_types = ALL when :child new_nodeset = [] nt = nil nodeset.each do |node| nt = node.node_type new_nodeset += node.children if nt == :element or nt == :document end nodeset = new_nodeset node_types = ELEMENTS when :literal return path_stack.shift when :attribute new_nodeset = [] case path_stack.shift when :qname prefix = path_stack.shift name = path_stack.shift for element in nodeset if element.node_type == :element attrib = element.attribute( name, get_namespace(element, prefix) ) new_nodeset << attrib if attrib end end when :any for element in nodeset if element.node_type == :element new_nodeset += element.attributes.to_a end end end nodeset = new_nodeset when :parent nodeset = nodeset.collect{|n| n.parent}.compact #nodeset = expr(path_stack.dclone, nodeset.collect{|n| n.parent}.compact) node_types = ELEMENTS when :ancestor new_nodeset = [] nodeset.each do |node| while node.parent node = node.parent new_nodeset << node unless new_nodeset.include? node end end nodeset = new_nodeset node_types = ELEMENTS when :ancestor_or_self new_nodeset = [] nodeset.each do |node| if node.node_type == :element new_nodeset << node while ( node.parent ) node = node.parent new_nodeset << node unless new_nodeset.include? node end end end nodeset = new_nodeset node_types = ELEMENTS when :predicate new_nodeset = [] subcontext = { :size => nodeset.size } pred = path_stack.shift nodeset.each_with_index { |node, index| subcontext[ :node ] = node subcontext[ :index ] = index+1 pc = pred.dclone result = expr( pc, [node], subcontext ) result = result[0] if result.kind_of? Array and result.length == 1 if result.kind_of? Numeric new_nodeset << node if result == (index+1) elsif result.instance_of? Array if result.size > 0 and result.inject(false) {|k,s| s or k} new_nodeset << node if result.size > 0 end else new_nodeset << node if result end } nodeset = new_nodeset =begin predicate = path_stack.shift ns = nodeset.clone result = expr( predicate, ns ) if result.kind_of? Array nodeset = result.zip(ns).collect{|m,n| n if m}.compact else nodeset = result ? nodeset : [] end =end when :descendant_or_self rv = descendant_or_self( path_stack, nodeset ) path_stack.clear nodeset = rv node_types = ELEMENTS when :descendant results = [] nt = nil nodeset.each do |node| nt = node.node_type results += expr( path_stack.dclone.unshift( :descendant_or_self ), node.children ) if nt == :element or nt == :document end nodeset = results node_types = ELEMENTS when :following_sibling results = [] nodeset.each do |node| next if node.parent.nil? all_siblings = node.parent.children current_index = all_siblings.index( node ) following_siblings = all_siblings[ current_index+1 .. -1 ] results += expr( path_stack.dclone, following_siblings ) end nodeset = results when :preceding_sibling results = [] nodeset.each do |node| next if node.parent.nil? all_siblings = node.parent.children current_index = all_siblings.index( node ) preceding_siblings = all_siblings[ 0, current_index ].reverse results += preceding_siblings end nodeset = results node_types = ELEMENTS when :preceding new_nodeset = [] nodeset.each do |node| new_nodeset += preceding( node ) end nodeset = new_nodeset node_types = ELEMENTS when :following new_nodeset = [] nodeset.each do |node| new_nodeset += following( node ) end nodeset = new_nodeset node_types = ELEMENTS when :namespace new_nodeset = [] prefix = path_stack.shift nodeset.each do |node| if (node.node_type == :element or node.node_type == :attribute) if @namespaces namespaces = @namespaces elsif (node.node_type == :element) namespaces = node.namespaces else namespaces = node.element.namesapces end if (node.namespace == namespaces[prefix]) new_nodeset << node end end end nodeset = new_nodeset when :variable var_name = path_stack.shift return @variables[ var_name ] # :and, :or, :eq, :neq, :lt, :lteq, :gt, :gteq # TODO: Special case for :or and :and -- not evaluate the right # operand if the left alone determines result (i.e. is true for # :or and false for :and). when :eq, :neq, :lt, :lteq, :gt, :gteq, :or left = expr( path_stack.shift, nodeset.dup, context ) right = expr( path_stack.shift, nodeset.dup, context ) res = equality_relational_compare( left, op, right ) return res when :and left = expr( path_stack.shift, nodeset.dup, context ) return [] unless left if left.respond_to?(:inject) and !left.inject(false) {|a,b| a | b} return [] end right = expr( path_stack.shift, nodeset.dup, context ) res = equality_relational_compare( left, op, right ) return res when :div left = Functions::number(expr(path_stack.shift, nodeset, context)).to_f right = Functions::number(expr(path_stack.shift, nodeset, context)).to_f return (left / right) when :mod left = Functions::number(expr(path_stack.shift, nodeset, context )).to_f right = Functions::number(expr(path_stack.shift, nodeset, context )).to_f return (left % right) when :mult left = Functions::number(expr(path_stack.shift, nodeset, context )).to_f right = Functions::number(expr(path_stack.shift, nodeset, context )).to_f return (left * right) when :plus left = Functions::number(expr(path_stack.shift, nodeset, context )).to_f right = Functions::number(expr(path_stack.shift, nodeset, context )).to_f return (left + right) when :minus left = Functions::number(expr(path_stack.shift, nodeset, context )).to_f right = Functions::number(expr(path_stack.shift, nodeset, context )).to_f return (left - right) when :union left = expr( path_stack.shift, nodeset, context ) right = expr( path_stack.shift, nodeset, context ) return (left | right) when :neg res = expr( path_stack, nodeset, context ) return -(res.to_f) when :not when :function func_name = path_stack.shift.tr('-','_') arguments = path_stack.shift subcontext = context ? nil : { :size => nodeset.size } res = [] cont = context nodeset.each_with_index { |n, i| if subcontext subcontext[:node] = n subcontext[:index] = i cont = subcontext end arg_clone = arguments.dclone args = arg_clone.collect { |arg| expr( arg, [n], cont ) } Functions.context = cont res << Functions.send( func_name, *args ) } return res end end # while return nodeset end ########################################################## # FIXME # The next two methods are BAD MOJO! # This is my achilles heel. If anybody thinks of a better # way of doing this, be my guest. This really sucks, but # it is a wonder it works at all. # ######################################################## def descendant_or_self( path_stack, nodeset ) rs = [] d_o_s( path_stack, nodeset, rs ) document_order(rs.flatten.compact) #rs.flatten.compact end def d_o_s( p, ns, r ) nt = nil ns.each_index do |i| n = ns[i] x = expr( p.dclone, [ n ] ) nt = n.node_type d_o_s( p, n.children, x ) if nt == :element or nt == :document and n.children.size > 0 r.concat(x) if x.size > 0 end end # Reorders an array of nodes so that they are in document order # It tries to do this efficiently. # # FIXME: I need to get rid of this, but the issue is that most of the XPath # interpreter functions as a filter, which means that we lose context going # in and out of function calls. If I knew what the index of the nodes was, # I wouldn't have to do this. Maybe add a document IDX for each node? # Problems with mutable documents. Or, rewrite everything. def document_order( array_of_nodes ) new_arry = [] array_of_nodes.each { |node| node_idx = [] np = node.node_type == :attribute ? node.element : node while np.parent and np.parent.node_type == :element node_idx << np.parent.index( np ) np = np.parent end new_arry << [ node_idx.reverse, node ] } new_arry.sort{ |s1, s2| s1[0] <=> s2[0] }.collect{ |s| s[1] } end def recurse( nodeset, &block ) for node in nodeset yield node recurse( node, &block ) if node.node_type == :element end end # Builds a nodeset of all of the preceding nodes of the supplied node, # in reverse document order # preceding:: includes every element in the document that precedes this node, # except for ancestors def preceding( node ) ancestors = [] p = node.parent while p ancestors << p p = p.parent end acc = [] p = preceding_node_of( node ) while p if ancestors.include? p ancestors.delete(p) else acc << p end p = preceding_node_of( p ) end acc end def preceding_node_of( node ) psn = node.previous_sibling_node if psn.nil? if node.parent.nil? or node.parent.class == Document return nil end return node.parent #psn = preceding_node_of( node.parent ) end while psn and psn.kind_of? Element and psn.children.size > 0 psn = psn.children[-1] end psn end def following( node ) acc = [] p = next_sibling_node( node ) while p acc << p p = following_node_of( p ) end acc end def following_node_of( node ) if node.kind_of? Element and node.children.size > 0 return node.children[0] end return next_sibling_node(node) end def next_sibling_node(node) psn = node.next_sibling_node while psn.nil? if node.parent.nil? or node.parent.class == Document return nil end node = node.parent psn = node.next_sibling_node end return psn end def norm b case b when true, false return b when 'true', 'false' return Functions::boolean( b ) when /^\d+(\.\d+)?$/ return Functions::number( b ) else return Functions::string( b ) end end def equality_relational_compare( set1, op, set2 ) if set1.kind_of? Array and set2.kind_of? Array if set1.size == 1 and set2.size == 1 set1 = set1[0] set2 = set2[0] elsif set1.size == 0 or set2.size == 0 nd = set1.size==0 ? set2 : set1 rv = nd.collect { |il| compare( il, op, nil ) } return rv else res = [] SyncEnumerator.new( set1, set2 ).each { |i1, i2| i1 = norm( i1 ) i2 = norm( i2 ) res << compare( i1, op, i2 ) } return res end end # If one is nodeset and other is number, compare number to each item # in nodeset s.t. number op number(string(item)) # If one is nodeset and other is string, compare string to each item # in nodeset s.t. string op string(item) # If one is nodeset and other is boolean, compare boolean to each item # in nodeset s.t. boolean op boolean(item) if set1.kind_of? Array or set2.kind_of? Array if set1.kind_of? Array a = set1 b = set2 else a = set2 b = set1 end case b when true, false return a.collect {|v| compare( Functions::boolean(v), op, b ) } when Numeric return a.collect {|v| compare( Functions::number(v), op, b )} when /^\d+(\.\d+)?$/ b = Functions::number( b ) return a.collect {|v| compare( Functions::number(v), op, b )} else b = Functions::string( b ) return a.collect { |v| compare( Functions::string(v), op, b ) } end else # If neither is nodeset, # If op is = or != # If either boolean, convert to boolean # If either number, convert to number # Else, convert to string # Else # Convert both to numbers and compare s1 = set1.to_s s2 = set2.to_s if s1 == 'true' or s1 == 'false' or s2 == 'true' or s2 == 'false' set1 = Functions::boolean( set1 ) set2 = Functions::boolean( set2 ) else if op == :eq or op == :neq if s1 =~ /^\d+(\.\d+)?$/ or s2 =~ /^\d+(\.\d+)?$/ set1 = Functions::number( s1 ) set2 = Functions::number( s2 ) else set1 = Functions::string( set1 ) set2 = Functions::string( set2 ) end else set1 = Functions::number( set1 ) set2 = Functions::number( set2 ) end end return compare( set1, op, set2 ) end return false end def compare a, op, b case op when :eq a == b when :neq a != b when :lt a < b when :lteq a <= b when :gt a > b when :gteq a >= b when :and a and b when :or a or b else false end end end end