D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
opt
/
cloudlinux
/
venv
/
lib64
/
python3.11
/
site-packages
/
numpy
/
typing
/
tests
/
data
/
reveal
/
Filename :
twodim_base.pyi
back
Copy
from typing import Any, TypeVar import numpy as np import numpy.typing as npt _SCT = TypeVar("_SCT", bound=np.generic) def func1(ar: npt.NDArray[_SCT], a: int) -> npt.NDArray[_SCT]: pass def func2(ar: npt.NDArray[np.number[Any]], a: str) -> npt.NDArray[np.float64]: pass AR_b: npt.NDArray[np.bool_] AR_u: npt.NDArray[np.uint64] AR_i: npt.NDArray[np.int64] AR_f: npt.NDArray[np.float64] AR_c: npt.NDArray[np.complex128] AR_O: npt.NDArray[np.object_] AR_LIKE_b: list[bool] reveal_type(np.fliplr(AR_b)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.fliplr(AR_LIKE_b)) # E: ndarray[Any, dtype[Any]] reveal_type(np.flipud(AR_b)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.flipud(AR_LIKE_b)) # E: ndarray[Any, dtype[Any]] reveal_type(np.eye(10)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.eye(10, M=20, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] reveal_type(np.eye(10, k=2, dtype=int)) # E: ndarray[Any, dtype[Any]] reveal_type(np.diag(AR_b)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.diag(AR_LIKE_b, k=0)) # E: ndarray[Any, dtype[Any]] reveal_type(np.diagflat(AR_b)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.diagflat(AR_LIKE_b, k=0)) # E: ndarray[Any, dtype[Any]] reveal_type(np.tri(10)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.tri(10, M=20, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] reveal_type(np.tri(10, k=2, dtype=int)) # E: ndarray[Any, dtype[Any]] reveal_type(np.tril(AR_b)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.tril(AR_LIKE_b, k=0)) # E: ndarray[Any, dtype[Any]] reveal_type(np.triu(AR_b)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.triu(AR_LIKE_b, k=0)) # E: ndarray[Any, dtype[Any]] reveal_type(np.vander(AR_b)) # E: ndarray[Any, dtype[signedinteger[Any]]] reveal_type(np.vander(AR_u)) # E: ndarray[Any, dtype[signedinteger[Any]]] reveal_type(np.vander(AR_i, N=2)) # E: ndarray[Any, dtype[signedinteger[Any]]] reveal_type(np.vander(AR_f, increasing=True)) # E: ndarray[Any, dtype[floating[Any]]] reveal_type(np.vander(AR_c)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] reveal_type(np.vander(AR_O)) # E: ndarray[Any, dtype[object_]] reveal_type(np.histogram2d(AR_i, AR_b)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[floating[Any]]]] reveal_type(np.histogram2d(AR_f, AR_f)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[floating[Any]]]] reveal_type(np.histogram2d(AR_f, AR_c, weights=AR_LIKE_b)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[complexfloating[Any, Any]]], ndarray[Any, dtype[complexfloating[Any, Any]]]] reveal_type(np.mask_indices(10, func1)) # E: Tuple[ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]] reveal_type(np.mask_indices(8, func2, "0")) # E: Tuple[ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]] reveal_type(np.tril_indices(10)) # E: Tuple[ndarray[Any, dtype[{int_}]], ndarray[Any, dtype[{int_}]]] reveal_type(np.tril_indices_from(AR_b)) # E: Tuple[ndarray[Any, dtype[{int_}]], ndarray[Any, dtype[{int_}]]] reveal_type(np.triu_indices(10)) # E: Tuple[ndarray[Any, dtype[{int_}]], ndarray[Any, dtype[{int_}]]] reveal_type(np.triu_indices_from(AR_b)) # E: Tuple[ndarray[Any, dtype[{int_}]], ndarray[Any, dtype[{int_}]]]