D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
lib64
/
python3.6
/
site-packages
/
cryptography
/
hazmat
/
primitives
/
asymmetric
/
Filename :
rsa.py
back
Copy
# This file is dual licensed under the terms of the Apache License, Version # 2.0, and the BSD License. See the LICENSE file in the root of this repository # for complete details. from __future__ import absolute_import, division, print_function import abc try: # Only available in math in 3.5+ from math import gcd except ImportError: from fractions import gcd import six from cryptography import utils from cryptography.exceptions import UnsupportedAlgorithm, _Reasons from cryptography.hazmat.backends import _get_backend from cryptography.hazmat.backends.interfaces import RSABackend @six.add_metaclass(abc.ABCMeta) class RSAPrivateKey(object): @abc.abstractmethod def signer(self, padding, algorithm): """ Returns an AsymmetricSignatureContext used for signing data. """ @abc.abstractmethod def decrypt(self, ciphertext, padding): """ Decrypts the provided ciphertext. """ @abc.abstractproperty def key_size(self): """ The bit length of the public modulus. """ @abc.abstractmethod def public_key(self): """ The RSAPublicKey associated with this private key. """ @abc.abstractmethod def sign(self, data, padding, algorithm): """ Signs the data. """ @six.add_metaclass(abc.ABCMeta) class RSAPrivateKeyWithSerialization(RSAPrivateKey): @abc.abstractmethod def private_numbers(self): """ Returns an RSAPrivateNumbers. """ @abc.abstractmethod def private_bytes(self, encoding, format, encryption_algorithm): """ Returns the key serialized as bytes. """ @six.add_metaclass(abc.ABCMeta) class RSAPublicKey(object): @abc.abstractmethod def verifier(self, signature, padding, algorithm): """ Returns an AsymmetricVerificationContext used for verifying signatures. """ @abc.abstractmethod def encrypt(self, plaintext, padding): """ Encrypts the given plaintext. """ @abc.abstractproperty def key_size(self): """ The bit length of the public modulus. """ @abc.abstractmethod def public_numbers(self): """ Returns an RSAPublicNumbers """ @abc.abstractmethod def public_bytes(self, encoding, format): """ Returns the key serialized as bytes. """ @abc.abstractmethod def verify(self, signature, data, padding, algorithm): """ Verifies the signature of the data. """ RSAPublicKeyWithSerialization = RSAPublicKey def generate_private_key(public_exponent, key_size, backend=None): backend = _get_backend(backend) if not isinstance(backend, RSABackend): raise UnsupportedAlgorithm( "Backend object does not implement RSABackend.", _Reasons.BACKEND_MISSING_INTERFACE, ) _verify_rsa_parameters(public_exponent, key_size) return backend.generate_rsa_private_key(public_exponent, key_size) def _verify_rsa_parameters(public_exponent, key_size): if public_exponent not in (3, 65537): raise ValueError( "public_exponent must be either 3 (for legacy compatibility) or " "65537. Almost everyone should choose 65537 here!" ) if key_size < 512: raise ValueError("key_size must be at least 512-bits.") def _check_private_key_components( p, q, private_exponent, dmp1, dmq1, iqmp, public_exponent, modulus ): if modulus < 3: raise ValueError("modulus must be >= 3.") if p >= modulus: raise ValueError("p must be < modulus.") if q >= modulus: raise ValueError("q must be < modulus.") if dmp1 >= modulus: raise ValueError("dmp1 must be < modulus.") if dmq1 >= modulus: raise ValueError("dmq1 must be < modulus.") if iqmp >= modulus: raise ValueError("iqmp must be < modulus.") if private_exponent >= modulus: raise ValueError("private_exponent must be < modulus.") if public_exponent < 3 or public_exponent >= modulus: raise ValueError("public_exponent must be >= 3 and < modulus.") if public_exponent & 1 == 0: raise ValueError("public_exponent must be odd.") if dmp1 & 1 == 0: raise ValueError("dmp1 must be odd.") if dmq1 & 1 == 0: raise ValueError("dmq1 must be odd.") if p * q != modulus: raise ValueError("p*q must equal modulus.") def _check_public_key_components(e, n): if n < 3: raise ValueError("n must be >= 3.") if e < 3 or e >= n: raise ValueError("e must be >= 3 and < n.") if e & 1 == 0: raise ValueError("e must be odd.") def _modinv(e, m): """ Modular Multiplicative Inverse. Returns x such that: (x*e) mod m == 1 """ x1, x2 = 1, 0 a, b = e, m while b > 0: q, r = divmod(a, b) xn = x1 - q * x2 a, b, x1, x2 = b, r, x2, xn return x1 % m def rsa_crt_iqmp(p, q): """ Compute the CRT (q ** -1) % p value from RSA primes p and q. """ return _modinv(q, p) def rsa_crt_dmp1(private_exponent, p): """ Compute the CRT private_exponent % (p - 1) value from the RSA private_exponent (d) and p. """ return private_exponent % (p - 1) def rsa_crt_dmq1(private_exponent, q): """ Compute the CRT private_exponent % (q - 1) value from the RSA private_exponent (d) and q. """ return private_exponent % (q - 1) # Controls the number of iterations rsa_recover_prime_factors will perform # to obtain the prime factors. Each iteration increments by 2 so the actual # maximum attempts is half this number. _MAX_RECOVERY_ATTEMPTS = 1000 def rsa_recover_prime_factors(n, e, d): """ Compute factors p and q from the private exponent d. We assume that n has no more than two factors. This function is adapted from code in PyCrypto. """ # See 8.2.2(i) in Handbook of Applied Cryptography. ktot = d * e - 1 # The quantity d*e-1 is a multiple of phi(n), even, # and can be represented as t*2^s. t = ktot while t % 2 == 0: t = t // 2 # Cycle through all multiplicative inverses in Zn. # The algorithm is non-deterministic, but there is a 50% chance # any candidate a leads to successful factoring. # See "Digitalized Signatures and Public Key Functions as Intractable # as Factorization", M. Rabin, 1979 spotted = False a = 2 while not spotted and a < _MAX_RECOVERY_ATTEMPTS: k = t # Cycle through all values a^{t*2^i}=a^k while k < ktot: cand = pow(a, k, n) # Check if a^k is a non-trivial root of unity (mod n) if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1: # We have found a number such that (cand-1)(cand+1)=0 (mod n). # Either of the terms divides n. p = gcd(cand + 1, n) spotted = True break k *= 2 # This value was not any good... let's try another! a += 2 if not spotted: raise ValueError("Unable to compute factors p and q from exponent d.") # Found ! q, r = divmod(n, p) assert r == 0 p, q = sorted((p, q), reverse=True) return (p, q) class RSAPrivateNumbers(object): def __init__(self, p, q, d, dmp1, dmq1, iqmp, public_numbers): if ( not isinstance(p, six.integer_types) or not isinstance(q, six.integer_types) or not isinstance(d, six.integer_types) or not isinstance(dmp1, six.integer_types) or not isinstance(dmq1, six.integer_types) or not isinstance(iqmp, six.integer_types) ): raise TypeError( "RSAPrivateNumbers p, q, d, dmp1, dmq1, iqmp arguments must" " all be an integers." ) if not isinstance(public_numbers, RSAPublicNumbers): raise TypeError( "RSAPrivateNumbers public_numbers must be an RSAPublicNumbers" " instance." ) self._p = p self._q = q self._d = d self._dmp1 = dmp1 self._dmq1 = dmq1 self._iqmp = iqmp self._public_numbers = public_numbers p = utils.read_only_property("_p") q = utils.read_only_property("_q") d = utils.read_only_property("_d") dmp1 = utils.read_only_property("_dmp1") dmq1 = utils.read_only_property("_dmq1") iqmp = utils.read_only_property("_iqmp") public_numbers = utils.read_only_property("_public_numbers") def private_key(self, backend=None): backend = _get_backend(backend) return backend.load_rsa_private_numbers(self) def __eq__(self, other): if not isinstance(other, RSAPrivateNumbers): return NotImplemented return ( self.p == other.p and self.q == other.q and self.d == other.d and self.dmp1 == other.dmp1 and self.dmq1 == other.dmq1 and self.iqmp == other.iqmp and self.public_numbers == other.public_numbers ) def __ne__(self, other): return not self == other def __hash__(self): return hash( ( self.p, self.q, self.d, self.dmp1, self.dmq1, self.iqmp, self.public_numbers, ) ) class RSAPublicNumbers(object): def __init__(self, e, n): if not isinstance(e, six.integer_types) or not isinstance( n, six.integer_types ): raise TypeError("RSAPublicNumbers arguments must be integers.") self._e = e self._n = n e = utils.read_only_property("_e") n = utils.read_only_property("_n") def public_key(self, backend=None): backend = _get_backend(backend) return backend.load_rsa_public_numbers(self) def __repr__(self): return "<RSAPublicNumbers(e={0.e}, n={0.n})>".format(self) def __eq__(self, other): if not isinstance(other, RSAPublicNumbers): return NotImplemented return self.e == other.e and self.n == other.n def __ne__(self, other): return not self == other def __hash__(self): return hash((self.e, self.n))